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ABSTRACT: We evaluated four different methods for data treat- 
ment of fingerprint images. The first two methods (Lee's method, 
and Iterative Automated Noise Filtering method) are used to remove 
signal-independent additive noise from digital images of finger- 
prints. The two other methods (low-pass and high-pass wavelet 
filtering), based on the wavelet transform, are employed not only 
to reduce the noise, but also to enhance the information of the 
fingerprints, especially details at the ridges. To evaluate these four 
filtering techniques we analyzed images of various fingerprints 
provided by the Police Department of Knoxville, Tennessee, and 
recorded digitally in the laboratory using inexpensive apparatus. 
Experimental results show that the methods are effective in diverse 
cases and have potential in forensic analysis of fingerprints. 

KEYWORDS: criminalistics, fingerprints, data treatment 
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Noise filtering is usually the first step in image analysis. The 
main objective is to improve the image quality without losing 
important information contained in the original image. Another 
important goal is to increase the efficiency of subsequent data- 
treatment processes, such as image segmentation; or, in the case 
of fingerprints, image compression, and image recognition. 

One of the major problems with signal filtering for fingerprint 
images is the possible loss of the minute ridge details. The fidelity 
of the ridge details must be conserved following the filter operation. 
Most of the information in the fingerprint is contained in the ridges. 
In fact, the most important information, used to determine if one 
fingerprint matches another, is not contained in the size of the 
fingerprint or in the main ridges, but in the minor details of the 
ridges. These ridges are small, have discontinuities, endings and 
bifurcations, which make them difficult to distinguish from noise 
containing similar spacial frequencies. It is therefore important to 
image filters carefully, especially when the source image has lim- 
ited resolution due to the image capture equipment. 

Although various image restoration and enhancement methods 
have been proposed for removing degradations in digital images 
[1-12], very few investigators have reported results of comparison 
between the relatively new wavelet methods and other filters com- 
monly applied to fingerprint images. In this study, we evaluate 
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four different data treatment techniques for digital images of 
fingerprints; 

1) Lee's method with spacial contrast enhancement, 
2) Sari-Sarraf's Iterative Automatic Noise Filtering method, 
3) a low-pass wavelet transform based filtering method, and 
4) a high-pass wavelet-based filtering method. 

All these methods are effective, especially the wavelet methods, 
which are relatively fast and allow the use of wavelet-based com- 
pression algorithm, or wavelet image recognition algorithm almost 
simultaneously (for more information on wavelet compression and 
recognition of fingerprint images see references [27] and [28]). 

Methodology 

Usually most of the additive noise filtering approaches employ 
the Fast Fourier Transform (FFT), convolution methods, or 
recursive algorithms [1-6]. The algorithms investigated here devi- 
ate from these approaches, in making use of either the local statis- 
tics [7-12] or the wavelet transform [13-17]. The first technique, 
developed by J. S. Lee [9], is based on the use of the local statistics 
of the image (the local mean and local variance). The principle 
of this technique is relatively simple: the local statistics of the 
undegraded image are assumed to be equal in a given neighbor- 
hood. The value of a pixel in the estimated image is calculated as 
the difference between the statistics of the corrupted image and 
that of the noise. This method had been proven to be a very 
effective tool in noise filtering but one of its major drawbacks is 
the necessity of using a priori knowledge or separate methods to 
estimate the noise statistics. To correct this drawback, we used a 
second method, developed by H. Sari-Sarraf and D. Brzakovic 
[12]. Their idea is to use the local statistics in an iterative manner 
and automatically compute an estimation of the noise statistics 
from the input image. The third method investigated uses the 
wavelet transform and is derived from the wavelet-based denoising 
procedure developed by Donoho and Johnstone [13-16] and from 
denoising and robust wavelet decompositions developed by Bruce 
and Donoho [171. The fourth method, also based on the wavelet 
transform, is more effective at enhancing the fingerprint ridges; it 
uses a decomposition in wavelet subspace to produce a high-pass 
filter. Finally in the Apparatus section, the apparatus used to record 
the fingerprint images is described. 

Lee's Algorithms 

The method developed by Lee [9] uses the local statistics of an 
image to enhance the contrast and filter the noise. Unlike other 
algorithms, this method does not use any transforms or recursive 
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methods; every pixel can be computed independently from its 
neighbors. These properties lead to a fast digital image pro- 
cessing program. 

Before discussing the algorithm itself we define some terms. 
Consider a digital image X, of size N columns by M rows. The 
local statistics of the image on a window of size (2y+ 1)•  1) 
could be defined as follows: 

mi , j  
(2y + 1)(2z + 1) K= y L z 

(1) 

1 
(2y + 1)(2z + 1) (Xi+Kj+L vi.j  

K = - y  z L 
(2) 

where x~j is the intensity of X at the pixel coordinates (i,j), m~j is 
the local mean of the image at the coordinates (i,j), and vj is the 
local variance at the coordinates (i,j). 

Two variations of Lee's algorithm were investigated, special 
contrast enhancement and additive noise filtering, the latter being 
part of the Iterative Automated Filtering. 

Spacial Contrast Enhancement--The first idea in the Lee's 
method is to rescale the gray level and redistribute the histogram 
of the image in order to increase the details. This method is derived 
from the algorithm of Wallis [8], providing an algorithm that 
maintains the local mean of the image but permits its local variance 
to be modified by a factor based on its original local variance. 
New pixels values are defined as: 

The principle is similar to that of Lee's method, but it assumes 
that all the noise cannot be removed in one operation. The algorithm 
computes an estimation of the variance of the noise and applies 
Lee's filter until the estimated noise is sufficiently small. 

To estimate the noise, the method uses two different computation 
procedures. At first, we suppose that a certain fraction, K, of the 
image is of uniform intensity, and we estimate the noise variance 
from those pixels by the formula: 

1 MNK 
- varl(i) (7) r M N K  ,=~o 

where var~ is an array containing all the local variances of the 
image in increasing order, and the sum goes from O to M times 
N times K. 

In the subsequent iteration, we suppose that the noise is always 
smaller than in the preceding iteration; the noise, in this case, is 
estimated by: 

1 i 1 

o'j- = O ~ i=0 ~] varj(i) (8) 

where I is the position of the first local variance superior to tr 2_ 1. 
In [11] it was shown that at lim j - oo  O-j 2 = O ;  therefore, we 

stop the algorithm procedure when tr~ = 0 is reached, and we can 
consider that the noise is suppressed. This method is relatively 
effective, but takes a long time for computation especially for large 
images. This method is the slowest of all the methods investigated. 

x[q = mi,j + k(xij - m,,j) (3) 

Where k is the factor modifying the local variance. In Lee's 
algorithm, for 0 < k <  1 the filter is equivalent to a low-pass filter, 
and for k> 1, the filter is equivalent to a high pass'filter. 

Additive Noise Filtering--In the second algorithm, we suppose 
that the image X is corrupted by a white noise W (of mean p~ equal 
to zero, and of variance tr2), producing an image Z. 

Z~. 1 = Xi.j + W~.y (4) 

where zij is the intensity of the image Z at the pixel coordinates 
(i,j), and w,j is the intensity of the noise at the pixel coordinates (i,j). 

Since we want to estimate X from Z, we use the same technique 
as before, but this time the factor k depends on the local variance 
of Z and X as follows: 

k,j - -  v i ' j  

v i j +  ~2 (5) 

If we replace k in (3) we obtain 

xi'j = mi.j + ki.j(xiq - mij)  (6) 

A problem with this method is that we need to know, or estimate 
the noise variance tr 2. One solution is to use Sari-Sarraf's Iterative 
Automated Noise Filtering algorithm to estimate the variance. 

Iterative Automated Noise Filtering (IAF) 

This method developed by H. Sari-Sarraf and D. Brzakovic [11], 
is a fully automated method that can reduce additive white noise. 

Low-pass Wavelet Filter 

The next two methods use the wavelet transform (WT), which 
involves the multiresolution signal decomposition developed by 
Mallat [24]. Here we present a brief explanation of the wavelet 
transform (for more detail, consult [18-26]). 

Wavelet Transform: A Brief  Introduction--The wavelet trans- 
form (WT) was first introduced by Morlet in [18]. The mathemati- 
cal background of the WT was developed by the investigators of 
the "French School" in 1984 and 1989 [19,20]. Meyer showed the 
connections of the wavelet theory with some earlier results in 
operator theory [21]. He and Stronberg also found a new family 
of wavelets, the orthonormal wavelets. Daubechies exploited this 
idea and created an algorithm to construct compactly supported 
orthonormal wavelets, based on iteration of discrete filters [22,23], 
and Mallat introduced the concept of multiresolution analysis [24- 
26], that we use in this work. 

The wavelet transform of a signal is computed by expanding the 
signal into a new space defined by the dilatations and translations of 
a unique function ~b. A continuous wavelet transform of a signal 
s(t) in one dimension takes the form: 

W(et, r ) = - ~ f  ~b(~-d~)s(t)dt (9) 

where ~b is the analyzing wavelet, ct represents a time dilatation 
and -r a time translation. 

In this paper, we are only interested in decomposing the signal 
using an orthonormal wavelet transformation, which can be defined 
as follows: 

w(2i ,2in) = 1 d~ ~ - n s(t) dt (10) 
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by substituting in (9) et=2 i and "r=2in, where i represents the level 
or order of transformation. 

For some well defined wavelets such as the one created by 
Daubechies [23], qb acts as a low-pass filter. That is, the function 
W(2i,2~n) is the equivalent of the convolution of s(t) with dp(t/2i), 
where + has a different "width" for each level i. If qb is viewed 
as the impulse response of a f'llter, then W could be interpreted as 
a low-pass filtering of s (by a filter h, see Fig. 1A), followed by 
a uniform sampling at the rate Z. Consequently, by applying a 
wavelet transform to s we remove some high-frequency details 
from the signal, and the higher the level i, the more details are 
removed�9 Since we do not want to lose all these details, we define 
another wavelet "orthogonal" to 0, which when applied to s, recov- 
ers the details. Transforming the signal s by the wavelet t~ is then 
equivalent to convoluting it with a high-pass filter (g in Fig. 1A) 
followed by a sampling at the rate 2 i. Based on these transforma- 
tions, Mallat proposed to repeat the operation, creating a pyramidal 
algorithm (see Fig. IA), which allows a useful decomposition of 
the signal�9 Source code for fast digital wavelet transformation has 
been published in reference [27]. 

The same algorithm can be easily extended to two dimensions 

- I  

as shown in Fig. lB. When applied in cascade, the algorithm 
produces a wavelet transformation of the image that can be used in 
various applications. It could be represented as three progressions 
(D1,), (D2,), (/)3,,), and the coarser level s,,  where 2~=N. The 
inverse wavelet transform allows us to reconstruct the image from 
its decomposition and is computed in the same manner, except 
that we use (H, G), the inverse filter of h and g. The algorithms 
for one- and two-dimensional reconstructions are shown in Fig. 
2A and Fig. 2B. 

Low-Pass Fil tering--In this method we are not applying the 
complete pyramidal algorithm to the image, but just the decomposi- 
tion to the level requested by the user (this saves some computation 
time). After the decomposition, we transform the result in order 
to filter the image. 

Since the white noise is usually a high-frequency phenomenon, 
our first attempt was to remove the highest details (D 1 l, D2t, D3 l, 
. . . )  before the inverse transform, hence suppressing the noise�9 
However, experience showed that even if this method works well 
on some signals, we lose important details in two-dimension 
images, especially in the fingerprint images used in this study, 
since the images have just enough resolution to record the ridge 
details. Donoho and Johnstone [14,15], propose a technique of 
"denoising by wavelet shrinkage." The principle behind this 
method is to observe that the noise is not the totality of the details 
of the transformation as we have first assumed, but actually an 
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FIG. l - -A)  The decomposition of signal Si, into the course signal Si+t 
and detail di+l, and B) the decomposition of an image Si into Si+t, Dli+l, 
D2i+l and D3i+ l, The process is repeated in a cascade to compute the 
wavelet transform. 
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FIG. 2--A) The reconstruction of S i from the course signal Si+l and 
the detail di§ and B) reconstruction of an image Sifrom Si+t Dli+l D2i+l 
and D3i+l. The process is repeated in a cascade to compute the inverse 
wavelet transform. 
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important part of  them. The smaller coefficients of the details can 
be considered as the noise, while the larger ones as the true details. 
We then apply a transformation that allows reduction of the noise 
while retaining actual information; we thus shrink the details. 
There are several possible "Shrink functions;" but, the one specific 
function we found to work is defined as: 

~0 if Idijl <h i  (11) 
D[ = Shrink(D/) = Lsign(di.j ) (l'di.jl hi) if I di.jl > hi 

where hi is a value which varies from level to level. After this 
Shrink transformation is applied, we reconstruct the image using 
the inverse wavelet transform, and obtain the filtered version of  
the image. 

High-Pass Wavelet Filtering 

This method also uses the wavelet decomposition, however, 
here we apply the algorithm in its totality. To make the equivalent 
of a high-pass filter using the wavelet decomposition, we first 
transform the image as follows. We know that the high-frequency 
details of the image are contained in the higher levels of the wavelet 
decomposition, so we tried to simply suppress (nullify the value 
of each point) the lower levels (S~, DI~, D2~, D3 . . . .  ), but as in 
the preceding method, the preliminary results were not satisfactory. 
In a second attempt, we tried to shrink the wavelet transform; but 
again, the filtering was not efficient. Finally, we applied Lee's 
algorithm to the lower level of the decomposition (the spacial 
contrast-enhancement) using a coefficient k> 1. The value of k 
changed from level to level. The algorithm, presented in Fig. 7, 
is described as follows: 

1. Select the level of filtering Ivl. 
2. Apply a wavelet transform to the image. 
3. Apply the inverse transform to one level. 
4. Use Lee's spacial contrast enhancement filter (with the coeffi- 
cient k depending on the level). 

5. If the level of filtering Ivl is reached, finish the reconstruction 
of the image and stop; else return to step 3, as required. 

This method is comparatively slow. However, it takes less time 
than the Iterative Automatic Noise Filtering method. 

Apparatus 

The system used to digitally record the fingerprints consisted 
of a charged-coupled device (CCD, model ST-6, Santa Barbara 
Instrument Group) camera fitted with a 105-mm macro lens. The 
camera was held 12-20 inches above the developed fingerprints 
and a variety of light sources were used to expose the prints. The 
camera's microcontroller was linked to a desktop computer via a 
RS-232 serial port. Figure 3 is a schematic of the camera system. 

The ST-6 is an inexpensive camera marketed by Santa Barbara 
for use by amateur astronomers. The entire system, including the 
computer, costs less than $5000. This camera has a built-in two- 
stage cooling capability that reduces the dark noise and allows 
long exposures for increased sensitivity to low-light subjects, such 
as latent prints developed with fluorescent stains and viewed 
through spectrally narrow optical filters. The resolution of the 
camera was 375 by 242 pixels, adequate to record the ridge detail 
of the prints. While a higher resolution would be useful to allow 
more effective digital filtering, this would increase the cost of the 

CCD Camera 
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Optical fiber 

i _ i o c o  Camera 
c,ooon.o 

486 Computer 

Incandescent light 

/ 

FIG. 3--Apparatus used to record print images. 

system. One drawback of this camera is the relatively slow data 
transfer rate between the microcontroller and the computer; at least 
20 s are required per image (more if a dark frame is subtracted). 

A white light source (incandescent lightbulb) was used to expose 
most of the prints, and a helium-cadmium laser (325 nm, roughly 
4 mW) was used to expose the print developed with fluorescent 
powder. A 600 lxm core glass optical fiber was used to guide the 
laser light to the print. The fiber was held about 10 inches from 
the print to allow the cone of light emanating from the fiber to 
expand to a diameter of 2 cm. 

Results and Discussion 

We now apply the four methods described previously to the 
analysis of fingerprint images. All the fingerprint images investi- 
gated were acquired using the apparatus described previously. To 
show the performance of the filtering techniques, we selected six 
fingerprints with specific problems. Some of these fingerprints 
(Fig. 4 A, Fig. 5 A, Fig. 6 A) were developed in the laboratory for 
this study, and others (Fig. 7 A, Fig. 8 A, Fig. 9 A) were provided 
to us by A. Bohanan of the Knoxville, Tennessee Police Depart- 
ment. The first print (Fig. 4 A) was developed with Rhodamine 
6G powder. The second print (Fig. 5 A) was an impression of an 
inked finger on paper. The third, fourth, and fifth images (Figs. 6 
A, 7 A, 8 A) are vely clear fingerprints. The third print (Fig. 6 A) 
was developed with black printer toner powder on a glass slide. 
The characteristic of the fingerprint image in Fig. 4 A is that the 
image presents high contrasts in intensity. The entire image is a 
succession of black and white spots in which the ridges appear. 
The problem with the second image (Fig. 5 A) and the sixth image 
(Fig. 9 A) is the opposite; the images show a very low contrast 
(the background has the same level of intensity as the fingerprint 
itself), and the signal is significantly corrupted by noise. 

The results of filtering are presented in the Figs. 4 to 9. Images 
labeled 'A' on the upper left comer always represent the original 
image. Images labeled 'B'  show the Lee filtering for almost all 
the fingerprints (Figs. 4 B, 5 B, 6 B, 7 B, 9 B), and we can see 
(particularly on the Figs. 6 B, and 7 B,) that Lee's algorithm 
conserves and enhances the ridges already detectable in the original 
image; Lee's algorithm also increases the resolution in the dark 
spot of the images (as in Fig. 4B), but has no effect on the white 
spot and the low-contrast region. 
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FIG. 4--Fingerprint on paper with irregular darkness, hnage A is the origit,al image, the remaining images were treated with the following filters: 
B) Lee filter," C) lterative Automatic Filter; D-F) low-pass wavelet filter with Daubechies' wavelets 2, 5, and 10; G-I) high-pass wavelet filter with 
Daubechies' wavelets 2, 5, and 10, respectively. 
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FIG. 5--Fingerprint on paper with very low intensiO'. Image A is the original image, the remaining images were treated with the following filters: 
B) Lee filter; C) Iterative Automatic Filter; D-F) low-pass wavelet filter with Daubechies" wavelets, 2, 5, and 10, G-I) high-pass wavelet filter with 
Daubechies' wavelets 2, 5, and 10, respectively. 
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FIG. 6---Fingerprint on glass developed with toner powder. Image A is the original image, the remaining images were treated with the following 
flters: B) Lee filter; C) Iterative Automatic Filter; D-F) low-pass wavelet filter with Daubechies' wavelets 2, 5, and 10; G-I) high-pass wavelet f l ter  
with Daubechies' wavelets 2, 5, and 10, respectively. 
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FIG. 7--Fingerprint on paper. Image A is the original image, the remaining images were treated with the following filters: B) Lee filter; C) lterative 
Automatic Filter; D-F) low-pass wavelet filter with Daubechies' wavelets 2, 5, and 10; G-I) high-pass wavelet filter with Daubechies' wavelets 2, 5, 
and 10, respectively. 



834 JOURNAL OF FORENSIC SCIENCES 

FIG. 8--Fingerprint on paper. Image A is the original image, the remaining images were treated with the following filters: B) lterative Automatic 
Filter; C) low-pass wavelet filter with Daubechies' wavelet 10; D) high-pass wavelet filter with Daubechies" wavelet 5. 
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FIG. 9--Fingerprint on plastic. Image A is the original image, the remaining images were treated with the following filters: B) Lee filter; C) Iterative 
Automatic Filter; D) high-pass wavelet fiher with Daubechies' wavelet 10. 
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Images 4 C, 5 C, 6 C, 9 C, and 8 B show the results of the Iterative 
Automatic Filtering algorithm. This algorithm also enhances the 
ridges already detectable, especially when the image is clear as 
in images 6 C or 8 B. However it aggravates the problem of the 
dark spots, and does not improve the low-contrast image. The Lee 
and IAF algorithms could be used to intensify the ridges already 
detectable in the images. The IAF algorithm is slightly better than 
Lee's algorithm; but Lee's method, unlike the IAF method, is able 
to detect some additional ridges in the black areas. Neither of 
these methods, however, improved the low-intensity (or low con- 
trast) images. 

For the two other methods (the wavelet methods), we have 
chosen to present the results using three different wavelets for 
the three first fingerprints--to demonstrate that the nature of the 
wavelet is important in image treatment. Here the wavelets chosen 
are Daubechies' wavelets 2, 5 and 10, but some other smoothing 
wavelet may have been chosen. The low-pass filter corrects the 
noise and is able to increase the resolution of the low contrast 
image (Figs. 5 D, E, F); it conserves the ridges in the clear image 
(Figs. 6 D, E, F, or 7 and 8 C),-but is totally ineffective on the 
high-contrast image (Figs. 4 D, E, F). This algorithm could be 
useful for low-contrast images, but is not suitable for the other 
cases. The last method (high-pass wavelet filtering) is, on the 
contrary, effective on high-contrast images (Figs. 4 G, H,/).  Even 
the ridges in dark and white spots are enhanced (the smaller wavelet 
seems to be more effective). The apparent resolution seems to be 
lower when the image is of low-intensity and corrupted by noise. 

The two last methods are complementary: If one method does 
not improve the image, use of the other will often enhance the 
image. We can also see that none of the methods are really suitable 
when there are little features as in the image 9, a fingerprint taken 
on plastic with a white powder. The performance of the different 
methods are summarized in Table 1. 

Conclusion 

In this paper, four methods for reducing noise and for enhancing 
fingerprint images have been presented. While obtaining marked 
improvements in these low-resolution images is difficult, the results 
show that digital filtering can enhance the clarity of important 
fingerprint features. The results indicate that even if they are not 
appropriate for every case, the wavelet methods are relatively 
fast, and could save some additional time, especially when data 
compression or image recognition is also required. If one uses 
wavelet methods for both data compression and filtering, much 
of the total computational time required for wavelet-based data 
compression has already occurred during the wavelet high-pass 
filter computation. 

TABLE 1--Summao, of the result of the methods on fingerprint images. 

Cases 

L-P H-P 
Lee IAF W W 

filter filter filter filter 

1. Ridges already detectable Figs. 4, 6-8 + + o o 
2. Dark spots Figs. 4, 6 + o - + 
3. White spots Figs. 4, 7, 8 - o o o 
4. Low-contrast Figs. 5, 9 o o + - 
5. High-contrast Figs. 4, 7 + o - + 
6. Clear image Figs. 6-8 + + o + 

NOTE: - = lower quality image, o = same quality image, + = better 
quality image. 
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